Photo 15. Projection receiver. Photo 16. Inside view of the receiver shown in photo 15. Photo 17. Impulse-driven high-tension generator for 25 kV. schmidt projector. Photo 19 Correcting lens for Schmidt projector. Let n=3, $V_{ho}=25$ kV, $V_b=350$ V and $\triangle V_a=280$ V, then, according to (7.3-27), for $R_{io}=5$ M Ω : $$W_b = \frac{1}{2} k \frac{V_b}{\Delta V_a} \frac{V_{bo}^2}{R_{ba}} = \frac{1}{2} - \frac{7}{9} - \frac{350 \cdot 25^2 \cdot 10^6}{280 \cdot 5 \cdot 10^6} = 61 \text{ W}.$$ Conversely, for $W_b=6$ W, a value of about 50 M Ω is found for R_{to} . With such a low power, however, it is still possible to get an internal resistance of 5 M Ω or less with the aid of an automatic control voltage. This control voltage, which depends upon the value of the voltage Fig. 7.3–8 Circuit diagram for a $25~\mathrm{kV}$ pulse E.H.T. generator. peaks on the L- C_p circuit, is obtained by rectifying the voltage peaks induced in a winding coupled to the coil L. Due to this automatic control, there is only a small drop in the E.H.T. voltage when the current rises from zero to a certain limit. The equation (7.3-27) then applies for loads above that limit and not in the control range. Above that limit the E.H.T. voltage drops quickly. This is a valuable property of the system, because any short-circuiting is less destructive. To make the control as effective as possible, two measures are taken: - 1. The winding is connected in such a way that a voltage proportional to the voltage peak V_2 is rectified, since, as already mentioned, this varies more than V_1 , see fig. 7.3-6. - 2. A constant delay voltage is connected in series with the peak voltage to be rectified, so that, with varying load, the percentage variation in the resulting control voltage is more than that in the induced peak voltage. Figure 7.3–8 gives the circuit diagram for a pulse E.H.T. generator for $25\,\mathrm{kV}$. For this voltage $\mathrm{n}=3$ is in every respect a satisfactory compromise for the number of stages in cascade. The peak voltage across S_1 is in this case 8.5 kV. The anode of the power valve is connected to a tap on S_1 , because the permissible anode peak voltage of this valve is about 6 kV. The tapping ratio is 0.7. The rectifying valves of the Mullard EY 51 type are suitable for an inverse voltage of 17 kV. The saturation current is about 200 mA, whilst a filament power of 0.5 W is required, this power being taken from the circuit. For this purpose the coils S_3 , S_4 and S_5 , each consisting of a few turns coupled to S_1 , are provided at the top end of S_1 . In S_2 the peak voltage is induced, which has to produce the control voltage across R_5 and C_5 . This control voltage is applied to the control grid of the power valve via R_2 . The delay voltage across R_3 is intended to make the control voltage more dependent upon the load than the voltage across S_2 . Fig. 7.3–9 Direct voltage output V_h and input power W_b as functions of the D.C. output current i_h . The adjustment of the power valve is such that at no load the control voltage is so high that the peak current i_m flowing in the anode circuit is much less than that corresponding to $V_g=0$. Under load, however, the voltage across R_5 , and thus also the negative bias on the grid of the output pentode, will be reduced. As a result, there will be an increase in i_m in the anode circuit and thus also in V_m across the coil, so that, in spite of the reduction of $\frac{V_1}{V_m}$ and $\frac{V_2}{V_m}$, the peak voltages V_1 and V_2 remain practically constant. In fig. 7.3–9 the direct voltage V_h and the input power W_h are shown as a function of the output current i_h . It is seen that at first the voltage V_h drops little with increasing current, but after $i_h = 250 \,\mu\text{A}$ is reached, there is a sharp drop of the voltage. Both this voltage drop at the end of the control range and the value of W_b compare very favourably with that found in the case of the high-frequency E.H.T. generator; see fig. 7.2–7.